Selasa, 27 Mei 2014


PENGUJIAN HIPOTESIS  

Hipotesis adalah asumsi atau dugaan mengenai sesuatu hal yang dibuat untuk menjelaskan  hal itu yang sering dituntut untuk melakukan pengecekannya. (dalam penelitian hipotesis dapat diartikan jawaban sementara terhadap rumusan masalah penelitian). Jika asumsi itu atau dugaan itu dikhususkan mengenai populasi, umumnya mengenai nilai-nilai parameter populasi, maka hipotesis itu disebut  hipotesis statistik. kecuali dinyatakan lain, di sini dengan hipotesis dimaksudkan hipotesis statistik. Setiap hipotesis bisa benar atau tidak benar dan karenanya perlu diadakan penelitian sebelum hipotesis itu diterima atau ditolak. Langkah atau prosedur untuk menentukan apakah menerima atau menolak hipotesis dinamakan pengujian hipotesis

            Dalam dunia  akademik, suatu  masalah  terlebih  dahulu  dijawab  secara  teoritik. Berdasarkan konsep teoritik tersebut maka dapat diajukan suatu hipotesis. Dengan hipotesis tersebut  suatu  masalah sudah dapat dijawab, tetapi  jawaban  masih  bersifat  teoritik  dan bersifat  sementara. Oleh  sebab itu, diperlukan data lapangan untuk memastikan kebenaran hipotesis  yang  diajukan.  Kebenaran  hipotesis  tergantung  pada  analisis  data    lapangan. Hipotesis yang diajukan dapat diterima kebenarannya jika  analisis   data    lapangan   sesuai dengan teori. Sebaliknya jika analisis data lapangan bertolak belakang (berbeda)  dengan teori,maka hipotesis yang diajukan dapat ditolak.

            Hipotesis dapat bersifat Kuantitatif dan dapat bersifat Kualitatif. Secara statistik, hipotesis yang bersifat kualitatif tidak dapat diuji, sedangkan yang dapat diuji adalah hipotesis yang bersifat kuantitatif. Hipotesis yang demikian, disebut Hipotesis Statistik (Statistical Hypothesis) karena selain harus disajikan dalam bentuk angka, hipotesis statistik juga merupakan pernyataan tentang bentuk fungsi yang menggambarkan hubungan antar variabel yang diteliti.

Secara statistika terdapat dua macam hipotesis, yaitu :
•   Hipotesis Nol (Null Hypothesis) yang diberi symbol dengan Ho, dan
•   Hipotesis Alternatif (Alternative Hypothesis) yang diberi symbol dengan Ha.

            Ho menyatakan tidak ada perbedaan antara statistik sampel dengan parameter populasi atau tidak ada hubungan antara dua variabel atau lebih. Ha menyatakan terdapat perbedaan antara statistik sampel dengan parameter populasi atau terdapat hubungan antara dua variabel atau lebih.Dalam merumuskan suatu hipotesis, agar hipotesis yang diajukan dapat diuji atau dianalisis maka yang perlu mendapatkan perhatian adalah bahwa hipotesis hendaknya :

a)Menyatakan hubungan antara dua variabel atau lebih;
b)Dinyatakan dalam kalimat pernyataan;
c)Dirumuskan secara jelas dan padat (sistematik); dan
d)Dapat diuji kebenarannya berdasarkan data lapangan.


Kesalahan dalam Pengujian Hipotesis



Dalam melakukan pengujian hipotesis, ada dua macam kekeliruan yang dapat terjadi, dikenal dengan nama-nama:
a)      Kekeliruan tipe I : ialah menolak hipotesis yang seharusnya diterima,
b)      Kekeliruan tipe II : ialah menerima hipotesis yang seharusnya ditolak.
Untuk meningkatkan hubungan antara hipotesis, kesimpulan dan tipe kekeliruan, dapat dilihat dalam tabel di bawah ini.
DAFTAR VI (1)
TIPE KEKELIRUAN KETIKA MEMBUAT KESIMPULAN
TENTANG HIPOTESIS
KESIMPULAN
KEADAAN SEBENARNYA
HIPOTESIS BENAR
HIPOTESIS SALAH
Terima Hipotesis
BENAR
KELIRU
(Kekeliruan Tipe II)
Tolak Hipotesis
KELIRU
(Kekeliruan Tipe I)
BENAR
              Ketika merencanakan suatu penelitian dalam rangka pengujian hipotesis, jelas kiranya bahwa kedua tipe kekeliruan itu harus dibuat sekecil mungkin. Agar penelitian dapat dilakukan maka kedua tipe kekeliruan itu kita nyatakan dalam peluang. Peluang membuat kekeliruan tipe I biasa dinyatakan dengan a (baca : alfa) dan peluang membuat kekeliruan tipe II dinyatakan dengan b (baca : beta). Berdasarkan ini, kekeliruan tipe I dinamakan pula kekeliruan a dan kekeliruan tipe II dikenal dengan kekeliruan b.
              Dalam penggunaanya, a disebut pula taraf signifikan atau taraf arti atau sering disebut pula taraf nyata. Besar kecilnya a dan b yang dapat diterima dalam pengambilan kesimpulan bergantung pada akibat-akibat atas diperbuatnya kekeliruan-kekeliruan itu. Selain daripada itu perlu pula dikemukakan bahwa kedua kekeliruan itu saling berkaitan. Jika a diperkecil, maka b menjadi besar dan sebaliknya. Pada dasarnya, harus dicapai hasil pengujian hipotesis yang baik, ialah pengujian yang bersifat bahwa di antara semua pengujian yang dapat dilakukan dengan harga a yang sama besar, ambillah sebuah yang mempunyai kekeliruan b paling kecil.
        Prinsip demikian memerlukan pemecahan matematik yang sudah keluar dari tujuan buku ini. Karenanya, untuk keperluan praktis, kecuali dinyatakan lain, a akan diambil lebih dahulu dengan harga yang biasa digunakan, yaitu a = 0,01 atau a = 0,05. Dengan a = 0,05 misalnya, atau sering pula disebut taraf nyata 5%, berarti kira-kira 5 dari tiap 100 kesimpulan bahwa kita akan menolak hipotesis yang seharusnya diterima. Dengan kata lain kira-kira 95% yakin bahwa kita telah membuat kesimpulan yang benar. Dalam hal demikian dikatakan bahwa hipotesis telah ditolak pada taraf nyata 0,05 yang berarti kita mungkin salah dengan peluang 0,05.
             
Cara Pengujian Hipotesis

1.   Menentukan Formulasi Hipotesis

Formulasi atau perumusan hipotesis statistik dapat dibedakan atas dua jenis, yaitu sebagai berikut : 
a.  Hipotesis nol atau hipotesis nihil 
     Hipotesis nol, disimbolkan H0 adalah hipotesis yang dirumuskan sebagai suatu pernyataan yang akan diuji. 
b. Hipotesis alternatif atau hipotesis tandingan
    HipĆ³tesis alternatif disimbolkan H1 atau Ha adalah hipotesis yang
    dirumuskan sebagai lawan atau tandingan dari hipotesis nol.
    Secara umum, formulasi hipotesis dapat dituliskan :
H0 : q = q0
H1 : q > q0
    Pengujian ini disebut pengujian sisi kanan
H0 : q = q0
H1 : q < q0
    Pengujian ini disebut pengujian sisi kiri
H0 : q = q0
H1 : q ¹ q0
    Pengujian ini disebut pengujian dua sisi
2.      Menentukan Taraf Nyata (Significant Level)
Taraf nyata adalah besarnya batas toleransi dalam menerima kesalahan hasil hipotesis terhadap nilai parameter populasinya. Taraf nyata dilambangkan dengan a (alpha). Semakin tinggi taraf nyata yang digunakan, semakin tinggi pula penolakan hipotesis nol atau hipotesis yang diuji, padahal hipotesis nol benar. Besarnya nilai a bergantung pada keberanian pembuat keputusan yang dalam hal ini berapa besarnya kesalahan yang akan ditolerir. Besarnya kesalahan tersebut disebut sebagai daerah kritis pengujian (critical region oftest) atau daerah penolakan (region of rejection).
3.   Menentukan Kriteria Pengujian
Kriteria pengujian adalah bentuk pembuatan keputusan dalam menerima atau menolak hipotesis nol (H0) dengan cara membandingkan nilai a table distribusinya (nilai kritis) dengan nilai uji statistiknya, sesuai dengan bentuk pengujiannya.
a.  Penerimaan H0 terjadi jika nilai uji statistiknya lebih kecil atau lebih
besar daripada nilai positif atau negatif dari a tabel. Atau nilai uji
statistik berada di luar nilai kritis.
b.  Penolakan H0 terjadi jika nilai uji statistiknya lebih besar atau lebih
kecil daripada nilai positif atau negatif dari a tabel. Atau nilai uji
statistik berada di dalam nilai kritis.
4.    Menentukan Nilai Uji Statistik
Uji statistik merupakan rumus-rumus yang berhubungan dengan distribusi tertentu dalam pengujian hipotesis. Uji statistik merupakan perhitungan untuk menduga parameter data sampel yang diambil secara random dari sebuah populasi.
5.    Membuat Kesimpulan
Pembuatan kesimpulan merupakan penetapan keputusan dalam hal penerimaan atau penolakan hipotesis nol (H0), sesuai dengan kriteria pengujiannya. Pembuatan kesimpulan dilakukan setelah membandingkan nilai uji statistik dengan nilai a tabel atau nilai kritis.
a.       Penerimaan H0 terjadi jika nilai uji statistik berada diluar nilai kritisnya
b.      Penolakan H0 terjadi jika nilai uji statitik berada di dalam nilai kritisnya


Dalam penelitian, hipotesis dapat diartikan sebagai jawaban sementara terhadap rumusan masalah dalam penelitian. Jika dugaan itu dikhususkan mengenai populasi, maka umumnya mengenai nilai-nilai parameterlah yang digunakan untuk menduganya atau disebut  hipotesis statistic.

Setiap hipotesis bisa benar atau tidak benar dan karenanya perlu diadakan penelitian sebelum hipotesis itu diterima atau ditolak. Langkah atau prosedur untuk menentukan apakah menerima atau menolak hipotesis dinamakan pengujian hipotesis.



Cara penentuan wilayah kritis

1. uji dua arah

Jika H1 ≠ parameter, maka dalam distribusi yang digunakan, normal untuk angka z, Student untuk t, F, Chi-Square dan lainnya, diperoleh dua daerah kritis masing-masing pada ujung-ujung distribusi. Luas daerah kritis atau daerah penolakan pada tiap ujung adalah ½a. Karena adanya dua daerah penolakan ini, maka pengujian hipotesis dinamakan uji dua arah.

Ho : Āµ = Āµo

H1 : Āµ ≠ Āµo
Ilustrasi penolakan uji dua arah











2. uji satu arah (Kanan)


Untuk H1 > parameter, maka dalam distribusi yang digunakan didapat sebuah daerah kritis yang letaknya di ujung sebelah kanan. Luas daerah kritis atau daerah penolakan ini sama dengan a. Pengujian ini dinamakan uji satu pihak, tepatnya pihak kanan.

Ho : Āµ = Āµo
H1 : Āµ > Āµo

Ilustrasi uji satu arah (Kanan)










3. Uji satu arah (Kiri)

Jika H1 < parameter, maka daerah kritis ada di ujung kiri dari distribusi yang digunakan. Luas = a yang menjadi batas daerah terima Ho oleh bilangan d yang didapat dari daftar distribusi yang bersangkutan. Peluang untuk mendapatkan d ditentukan oleh taraf nyata a. Uji ini dinamakan uji satu pihak, ialah pihak kiri.

Ho : Āµ = Āµo           
H1 : Āµ < Āµo
 
Ilustrasi uji satu arah (Kiri) 





CONTOH :
Pernyataan yang hendak diuji adalah : “berat isi semen 40 kg”. dalam pernyataan yang terkandung pengertian kesamaan, yakni “target berat = 40kg”. jadi, pernyataan itu merupakan hipotesis H0. alternative H1 berupa sanggahannya oleh karena itu,
a.  Rumusan H0 dan H1 adalah sebagai berikut :
    H0 : Target berat = 40 kg
    H1 : Target berat ≠ 40 kg
b. Rumusan H0 dan H1 secara statistic
“Target berat” secara statistic berarti “tyaraf populasi berat isi semen Āµ”. Jadi, terjemahan statistic untuk H0 dan H1 adalah H0 : Āµ = 40 dan H1 : Āµ ≠ 40
Kegunaan Hipotesis
Kegunaan hipotesis antara lain :
  1. Hipotesis memberikan penjelasan sementara tentang gejala-gejala serta memudahkan perluasan pengetahuan dalam suatu bidang
  2. Hipotesis memberikan suatu pernyataan hubungan yang langsung dapat diuji dalam penelitian
  3. Hipotesis memberikan arah kepada penelitian
  4. Hipotesis memberikan kerangka untuk melaporkan lesimpulan penyelidikan
Ciri-ciri Hipotesis
Cirri-ciri hipotesis yang baik :
  1. Hipotesis harus mempunyai daya penjelas
  2. Hipotesis harus menyatakan hubungan yang diharapkan ada diaantara variable-variabel
  3. Hipotesis harus dapat diuji
  4. Hipotesis hendaknya konsistensi dengan pengetahuan yang sudah ada
  5. Hipotesis hendaknya dinyatakan sederhana dan seringkas mungkin
Menggali dan Merumuskan Hipotesis
Dalam menggali hipotesis, peneliti harus :
  1. Mempunyai banyak informasi tentang masalah yang ingin dipecahkan dengan jalan banyak membaca literature-literatur yang ada hubungannya dengan penelitian yang sedang dilaksanakan.
  2. Mempunyai kemampuan untuk memeriksa keterangan tentang tempat-tempat, objek-objek serta hal-hal yang berhubungan satu sama lain dalam fenomena yang sedang diselidiki
  3. Mempunyai kemampuan untuk menghubungkan suatu keadaan dengan keadaan lainnya yang sesuai dengan kerangka teori ilmu dan bidang yang bersangkutan.
Sebagai kesimpulan, maka beberapa petunjuk dalam merumuskan hipotesis dapat diberikan sebagai berikut :
  1. Hipotesis harus dirumuskan secara jelas dan padat serta spesifik
  2. Hipotesis sebaiknya dinyatakan dalam kalimat deklaratif dan berbentuk pernyataan
  3. Hipotesis sebaiknya menyatakan hubungan antara dua atau lebih variable yang dapat diukur
  4. Hendaknya dapat diuji
  5. Hipotesis sebaiknya mempunyai kerangka teori

Uji hipotesis dengan Analisis Ragam / Analysis of variance (Anova)



Analisis varians (analysis of variance, ANOVA) adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Dalam literatur Indonesia metode ini dikenal dengan berbagai nama lain, seperti analisis ragam, sidik ragam, dan analisis variansi. Ia merupakan pengembangan dari masalah Behrens-Fisher, sehingga uji-F juga dipakai dalam pengambilan keputusan. Analisis varians pertama kali diperkenalkan oleh Sir Ronald Fisher, bapak statistika modern. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupun pendugaan (estimation, khususnya di bidang genetika terapan).

Pada materi sebelumnya, apabila peneliti ingin menguji perbedaan dari rata-rata satu kelompok atau rata-rata dua kelompok uji z dan uji t. Gimana jika kelompoknya tiga atau lebih apakah uji tersebut masih bisa digunakan? untuk uji perbedaan rata-rata tiga kelompok atau lebih uji f  yaitu dengan menggunakan Anova (analysis of variance).

Kenapa namanya Analysis of variance kenapa bukan analysis of means kan yang mau diuji means atau rata-ratanya? Awalnya juga aku mikir kayak gitu. ternyata maksud dari analisis ragam yaitu apabila kita ingin menguji apakah ada perbedaan rata-rata tiga kelompok atau lebih dengan membandingkan varians. dengan membandingkan varians itu kita bisa mengetahui apakah terdapat perbedaan atau tidak. perbandingan antar varians ini merupakan uji f tadi. untuk lebih jelasnya nanti akan dibahas.
Hipotesis dalam Anova (analysis of variance):

Dalam analysis of variance hanya satu hipotesis yang digunakan yaitu hipotesis dua arah (two tail). artinya hipotesis ini yaitu apakah ada perbedaan rata-rata. kita cuma pengen tahu itu, tidak spesifik yang mana yang berbeda. Nah kalau mau tahu kelompok yang benar-benar terdapat perbedaan rata-rata ada uji lanjutan dilakukan uji lanjutan. kalau tentang itu akan dibahas di lain tempat. Berikut hipotesis dalam Anova.
H0: Ī¼1 = Ī¼2 = Ī¼3 = ... = Ī¼n, Tidak ada perbedaan yang nyata antara rata-rata hitung dari n kelompok
H1: Ī¼1 ≠ Ī¼2 ≠ Ī¼3 ≠ ... ≠ Ī¼n, Ada perbedaan yang nyata antara rata-rata hitung dari n kelompok

Alasan penggunaan ANOVA
Uji hipotesis dengan ANOVA digunakan, setidaknya karena beberapa alasan berikut:
  1. Memudahkan analisa atas beberapa kelompok sampel yang berbeda dengan resiko kesalahan terkecil.
  2. Mengetahui signifikansi perbedaan rata-rata (Ī¼) antara kelompok sampel yang satu dengan yang lain. Bisa jadi, meskipun secara numeris bedanya besar, namun berdasarkan analisa ANOVA, perbedaan tersebut TIDAK SIGNIFIKAN sehingga perbedaan Ī¼ bisa diabaikan. Sebaliknya, bisa jadi secara numeris bedanya kecil, namun berdasarkan analisa ANOVA, perbedaan tersebut SIGNIFIKAN, sehingga minimal ada satu Ī¼ yang berbeda dan perbedaan Ī¼ antar kelompok sampel tidak boleh diabaikan.
  3. Analisis varians relatif mudah dimodifikasi dan dapat dikembangkan untuk berbagai bentuk percobaan yang lebih rumit. Selain itu, analisis ini juga masih memiliki keterkaitan dengan analisis regresi. Akibatnya, penggunaannya sangat luas di berbagai bidang, mulai dari eksperimen laboratorium hingga eksperimen periklanan, psikologi, dan kemasyarakatan.

Asumsi-asumsi yang harus dipenuhi dalam analisis varians (anova):

  1. Data berdistribusi normal, karena pengujiannya menggunakan uji F-Snedecor
  2. Varians atau ragamnya homogen, dikenal sebagai homoskedastisitas, karena hanya digunakan satu penduga (estimate) untuk varians dalam contoh
  3. Masing-masing contoh saling bebas, yang harus dapat diatur dengan perancangan percobaan yang tepat
  4. Komponen-komponen dalam modelnya bersifat aditif (saling menjumlah).
Jenis-jenis dari Analisis of Variance (Anova).


Pemilihan tipe ANOVA tergantung dari rancangan percobaan (experiment design) yang kita pilih .

Maksud dari kasus ini yaitu untuk menguji perbedaan rata-rata lebih dari dua sampel dimana dalam melakukan analisis hanya bisa satu arah. Maksud satu arah ini hanya bisa menguji antar kelompok yang satu. Untuk lebih jelasmya kita kasih contoh kasus saja ya.
Contoh kasus Anova satu arah:

Sampel
Penurunan Berat Badan (Kg)
Metode 1
Metode 2
Metode 3
Metode 4
Sampel 1
4
8
7
6
Sampel 2
6
12
3
5
Sampel 3
4
-
-
5

Terdapat 4 metode diet dan 3 golongan usia peserta program diet Berikut data rata-rata penurunan berat peserta keempat metode dalam tiga kelompok umur.

Berdasarkan gambar di atas terlihat bahwa ada empat metode (kolom). Dari empat metode itu dilakukan oleh beberapa orang tapi tiap metode dilakukan oleh orang yang berbeda. pada tabel diatas terlihat data diperoleh dari sampel yang berbeda perlakuan antar kelompok karen itu kita hanya bisa membandingkan antar metode tapi tidak bisa membandingkan antar orang karena setiap tidak melakukan metode yang sama. oleh karena itu dikatakan satu arah saja yaitu metode.

2. Anova dua arah tanpa interaksi anova two way without interaction

Jenis anova yang kedua yaitu anova dua arah tanpa interaksi. Artinya bahwa bisa dilakukan interaksi antara kelompok dan perlakuan. maksdunya bisa membandingkan antar antar kelompok atau kah antar perlakuan. berikut contoh kasus.
Contoh kasus Anova dua arah tanpa interaksi:

Umur
Penurunan Berat Badan (Kg)
Metode 1
Metode 2
Metode 3
Metode 4
< 20 tahun
5
6
2
3
20-40
2
7
5
3
> 40 tahun
7
3
4
3

Terdapat 4 metode diet dan 3 golongan usia peserta program diet Berikut data rata-rata penurunan berat peserta keempat metode dalam tiga kelompok umur.

Berdasarkan gambat tersebut terlihat bahwa setiap metode memiliki perlakuan yang sama sehingga bisa dikatakan ada hubungan dua arah. tapi tidak ada interaksi.

3. Anova dua arah dengan interaksi anova two way with interaction

Sebelum ini dijelaskan anova dua arah tanpa interaksi. dikatakan anova dengan interaksi ketika setiap kolom [perlakuan] dan blok [baris] diulang. Langsung kecontoh aja ya.
Contoh kasus Anova dua arah dengan interaksi:

Umur
Penurunan Berat Badan (Kg)
Metode 1
Metode 2
Metode 3
Metode 4
< 20 tahun
#1
#2
#3
5
4
5
0
2
1
3
4
8
4
2
2
20-40 tahun
#1
#2
#3
5
6
2
4
2
1
2
2
4
5
3
2
> 40 tahun
#1
#2
#3
4
4
5
5
5
0
2
1
2
6
4
4

Terdapat 4 metode diet, 3 kelompok umur dan 3 ulangan. Berikut adalah data ata-rata penurunan berat badan setelah 1 bulan melakukan diet. Ujilah apakah penurunan berat badan sama untuk setiap metode diet, kelompok umur dan interaksi dengan taraf uji 5 %?

Langkah-langkah melakukan uji hipotesis dengan ANOVA

1.     Kumpulkan sampel dan kelompokkan berdasarkan kategori tertentu. 

Untuk memudahkan pengelompokkan dan perhitungan, buat tabel data sesuai dengan kategori berisi sampel dan kuadrat dari sampel tersebut. Hitung pula total dari sampel dan kuadrat sampel tiap kelompok. Selain itu, tentukan pula hipotesis nol (H0) dan hipotesis alternatif (H1).

2.     Menentukan tipe anova 

apakah masuk tipe satu arah, tipe dua arah tanpa interaksi atau tipe dua arah dengan interaksi. karena akan berpengaruh pada perhitungan. Menentukan tipe seperti pada penejalasan diatas.

3.     Menghitung variabilitas dari seluruh sampel.

Pengukuran total variabilitas atas data dapat dikelompokkan menjadi tiga bagian:
o    Total of sum squares (SSt) – jumlah kuadrat total (jkt).
Merupakan jumlah kuadrat selisih antara skor individual dengan rata-rata totalnya.
o    Sum Square Between(SSb) – jumlah kuadrat kolom (jkk).
Variansi rata-rata kelompok sampel terhadap rata-rata keseluruhannya. Variansi di sini lebih terpengaruh karena adanya perbedaan perlakuan antar kelompok.
o    Sum Square within(SSw) – jumlah kuadrat galat (jkg).
Variansi yang ada dalam masing-masing kelompok. Banyaknya variansi akan tergantung pada banyaknya kelompok, dan variansi di sini tidak terpengaruh / tergantung oleh perbedaan perlakuan antar kelompok. 

4.     Menghitung derajat kebebasan (degree of freedom).

Derajat kebebasan atau degree of freedom (dilambangkan dengan v, dof, atau df) dalam ANOVA akan sebanyak variabilitas. Oleh karena itu, ada tiga macam derajat kebebasan yang akan kita hitung:
o    Derajat kebebasan untuk JKT
merupakan derajat kebebasan dari Jumlah kuadrat total (JKT) ini akan kita lambangkan dengan dof JKT
o    Derajat kebebasan untuk JKK
merupakan derajat kebebasan dari Jumlah kuadrat kolom (JKK) ini akan kita lambangkan dengan dof JKK
o    Derajat kebebasan untuk JKG
Merupakan derajat kebebasan dari Jumlah kuadrat galat (JKG) ini akan kita lambangkan dengan dof JKG

Derajat kebebasan juga memiliki sifat hubungan yang sama dengan sifat hubungan variabel, yakni:
dof JKT = dof JKK + dof JKG

5.     Menghitung variance antar kelompok dan variance dalam kelompok.

Variance dalam ANOVA, baik untuk antar kelompok maupun dalam kelompok sering disebut dengan kuadrat tengah atau deviasi rata-rata kuadrat (mean squared deviation) dan dilambangkan dengan MS atau KT. Dengan demikian, maka mean squared deviation masing-masing dapat dicari dengan rumus sebagai berikut:
o    KTK = JKK/dof jkk
o    KTG = JKG/dof jkg

6.     Menghitung F hitung

Menghitung nilai distribusi F (Fhitung) berdasarkan perbandingan variance antar kelompok dan variance dalam kelompok.Fhitung didapatkan dengan rumus di bawah ini:
Fhitung = KTK/KTG
7.     Menghitung F tabel

Selain itu, F berdasarkan tabel (Ftabel) juga dihitung, berdasarkan nilai derajat kebebasan (langkah ke-4) menggunakan tabel distribusi-F. Jangan lupa untuk mencantumkan gambar posisi Fhitung dan Ftabel dalam grafik distribusi-F.

8.     Membandingkan Fhitung dengan Ftabel :

o    Jika Fhitung > Ftabel : tolak H0
o    Jika Fhitung ≤ Ftabel : terima H0

9.     Buat kesimpulan, 

sesuai dengan kasus awal yang ditanyakan. Simpulkan, apakah perlakuan (treatment) memiliki efek yang signifikan pada sampel data atau tidak. Jika hasil tidak signifikan, berarti seluruh rata-rata sampel adalah sama. Jika perlakuan menghasilkan efek yang signifikan, setidaknya satu dari rata-rata sampel berbeda dari rata-rata sampel yang lain.

Contoh penghitungan Analysis of variance (Anova) dengan tabel.

Sumber Keragaman (SK)
Jumlah Kuadrat (JK)
Derajat Bebas (db)
Kuadrat Tengah (KT)
F hitung
Kolom (K)
JKK
db JKK
KTK =
JKK / db JKK
F hitung =
KTK / KTG
Galat (G)
JKG
db JKG
KTG =
JKG / db JKG

Total (T)
JKT
db JKT